Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
PloS one ; 18(3), 2023.
Article in English | EuropePMC | ID: covidwho-2263749

ABSTRACT

Effective masking policies to prevent the spread of airborne infections depend on public access to masks with high filtration efficacy. However, poor face-fit is almost universally present in pleated multilayer disposable face masks, severely limiting both individual and community respiratory protection. We developed a set of simple mask modifications to mass-manufactured disposable masks, the most common type of mask used by the public, that dramatically improves both their personalized fit and performance in a low-cost and scalable manner. These modifications comprise a user-moldable full mask periphery wire, integrated earloop tension adjusters, and an inner flange to trap respiratory droplets. We demonstrate that these simple design changes improve quantitative fit factor by 320%, triples the level of protection against aerosolized droplets, and approaches the model efficacy of N95 respirators in preventing the community spread of COVID-19, for an estimated additional cost of less than 5 cents per mask with automated production.

2.
PLoS One ; 18(3): e0281050, 2023.
Article in English | MEDLINE | ID: covidwho-2263750

ABSTRACT

Effective masking policies to prevent the spread of airborne infections depend on public access to masks with high filtration efficacy. However, poor face-fit is almost universally present in pleated multilayer disposable face masks, severely limiting both individual and community respiratory protection. We developed a set of simple mask modifications to mass-manufactured disposable masks, the most common type of mask used by the public, that dramatically improves both their personalized fit and performance in a low-cost and scalable manner. These modifications comprise a user-moldable full mask periphery wire, integrated earloop tension adjusters, and an inner flange to trap respiratory droplets. We demonstrate that these simple design changes improve quantitative fit factor by 320%, triples the level of protection against aerosolized droplets, and approaches the model efficacy of N95 respirators in preventing the community spread of COVID-19, for an estimated additional cost of less than 5 cents per mask with automated production.


Subject(s)
COVID-19 , Respiratory Protective Devices , Humans , COVID-19/prevention & control , Masks , N95 Respirators , Filtration
SELECTION OF CITATIONS
SEARCH DETAIL